High-Voltage Switchmode Controllers

Features

- 10 - to $120-\mathrm{V}$ Input Range
- Current-Mode Control
- High-Speed, Source-Sink Output Drive
- High Efficiency Operation (> 80\%)
- Internal Start-Up Circuit
- Internal Oscillator (1 MHz)
- SHUTDOWN and RESET
- Reference Selection

$$
\mathrm{Si} 9110- \pm 1 \%
$$

$$
\text { Si9111 - } \pm 10 \%
$$

Description

The Si9110/9111 are BiC/DMOS integrated circuits designed for use as high-performance switchmode controllers. A high-voltage DMOS input allows the controller to work over a wide range of input voltages (10to $120-\mathrm{VDC}$). Current-mode PWM control circuitry is implemented in CMOS to reduce internal power consumption to less than 10 mW .

A push-pull output driver provides high-speed switching for MOSPOWER devices large enough to supply 50 W of
output power. When combined with an output MOSFET and transformer, the $\mathrm{Si} 9110 / 9111$ can be used to implement single-ended power converter topologies (i.e., flyback, forward, and cuk).

The Si9110/9111 is available in 14-pin plastic DIP, SOIC and CerDIP packages, and are specified over the military, A suffix (-55 to $125^{\circ} \mathrm{C}$) and industrial, D suffix (-40 to $85^{\circ} \mathrm{C}$) temperature ranges.

Functional Block Diagram

Subsequent updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document \#1305.

Power Dissipation (Package)a
14-Pin CerDIP (K Suffix) ${ }^{\text {b }}$. 1000 mW

14-Pin Plastic DIP (J Suffix) ${ }^{\text {c }}$. 750 mW
14-Pin SOIC (Y Suffix) ${ }^{\text {d }}$. 900 mW
Thermal Impedance $\left(\Theta_{\mathrm{JA}}\right)$
14-Pin CerDIP . $100^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic DIP . $167^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC . $140^{\circ} \mathrm{C} / \mathrm{W}$

Notes
a. Device mounted with all leads soldered or welded to PC board.
b. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
d. Derate $7.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating Range

Voltages Referenced to $-\mathrm{V}_{\text {IN }}$

$\mathrm{V}_{\text {CC }}$	9.5 V to 13.5 V	$\mathrm{R}_{\text {OSC }}$	$25 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$
$+\mathrm{V}_{\text {IN }}$	10 V to 120 V	Linear Inputs	0 to $\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}$
$\mathrm{f}_{\text {OSC }}$	40 kHz to 1 MHz	Digital Inputs	$\ldots 0$ to V_{CC}

Specifications ${ }^{\text {a }}$

Specifications ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified $\begin{gathered} \text { DISCHARGE }=-\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V},+\mathrm{V}_{\mathrm{IN}}=48 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BIAS}}=390 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { D Suffix } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Error Amplifier (Cont'd)									
Input OFFSET Voltage	$\mathrm{V}_{\text {OS }}$	OSC IN $=-V_{\text {IN }}$ (OSC Disabled)	Room	± 15		± 40		± 40	mV
Open Loop Voltage Gain ${ }^{\text {e }}$	Avol		Room	80	60		60		dB
Unity Gain Bandwidth ${ }^{\text {e }}$	BW		Room	1.3	1		1		MHz
Dynamic Output Impedance ${ }^{\mathrm{e}}$	$\mathrm{Z}_{\text {OUT }}$		Room	1000		2000		2000	Ω
Output Current	IOUT	Source ($\mathrm{V}_{\mathrm{FB}}=3.4 \mathrm{~V}$)	Room	-2.0		-1.4		-1.4	mA
		Sink ($\left.\mathrm{V}_{\mathrm{FB}}=4.5 \mathrm{~V}\right)$	Room	0.15	0.12		0.12		
Power Supply Rejection	PSRR	$9.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 13.5 \mathrm{~V}$	Room	70	50		50		dB
Current Limit									
Threshold Voltage	$\mathrm{V}_{\text {SOURCE }}$	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	Room	1.2	1.0	1.4	1.0	1.4	V
Delay to Output ${ }^{\text {e }}$	t_{d}	$\mathrm{V}_{\text {SENSE }}=1.5 \mathrm{~V}$, See Figure 1	Room	100		150		150	ns
Pre-Regulator/Start-Up									
Input Voltage	$+\mathrm{V}_{\text {IN }}$	$\mathrm{I}_{\text {IN }}=10 \mu \mathrm{~A}$	Room		120		120		V
Input Leakage Current	$+\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}} \geq 9.4 \mathrm{~V}$	Room			10		10	$\mu \mathrm{A}$
Pre-Regulator Start-Up Current	ISTART	Pulse Width $\leq 300 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{CC}}=$ $\mathrm{V}_{\text {ULVO }}$	Room	15	8		8		mA
V_{CC} Pre-Regulator TurnOff Threshold Voltage	$\mathrm{V}_{\text {REG }}$	$\mathrm{IPRE-REGULATOR}=10 \mu \mathrm{~A}$	Room	8.6	7.8	9.4	7.8	9.4	V
Undervoltage Lockout	$\mathrm{V}_{\text {UVLO }}$		Room	8.1	7.0	8.9	7.0	8.9	
$\mathrm{V}_{\text {REG }}-\mathrm{V}_{\text {UVLO }}$	$\mathrm{V}_{\text {DELTA }}$		Room	0.6	0.3		0.3		
Supply									
Supply Current	I_{CC}	$\mathrm{C}_{\text {LOAD }}<75 \mathrm{pF}(\operatorname{Pin} 4)$	Room	0.6	0.45	1.0	0.45	1.0	mA
Bias Current	$\mathrm{I}_{\text {BIAS }}$		Room	15	10	20	10	20	$\mu \mathrm{A}$
Logic									
SHUTDOWN Delay ${ }^{\text {e }}$	${ }^{\text {t }}$ S	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{~V}_{\text {SENSE }}-\mathrm{V}_{\mathrm{IN}} \\ \text { See Figure } 2 \end{gathered}$	Room	50		100		100	ns
SHUTDOWN Pulse Widthe ${ }^{\text {e }}$	${ }_{\text {t }}$ W	See Figure 3	Room		50		50		
RESET Pulse Width ${ }^{\text {e }}$	$\mathrm{t}_{\text {RW }}$		Room		50		50		
Latching Pulse Width SHUTDOWN and RESET Low ${ }^{\text {e }}$	${ }_{\text {tW }}$	See Figure 3	Room		25		25		
Input Low Voltage	V_{IL}		Room			2.0		2.0	V
Input High Voltage	V_{IH}		Room		8		8		V

Specifications ${ }^{\text {a }}$

		Test Conditions Unless Otherwise Specified			$\begin{array}{r} \mathbf{A S} \\ -55 \text { to } \end{array}$	$\begin{aligned} & \text { uffix } \\ & 125^{\circ} \mathrm{C} \end{aligned}$	$\underset{-40 \text { to }}{\mathbf{D ~ S}}$	$\begin{aligned} & \text { ffix } \\ & 85^{\circ} \mathrm{C} \end{aligned}$	
Parameter	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V},+\mathrm{V}_{\mathrm{IN}}=48 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BIAS}}=390 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Unit
Logic (Cont'd)									
Input Current Input Voltage High	I_{H}	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$	Room	1		5		5	$\mu \mathrm{A}$
Input Current Input Voltage Low	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	Room	-25	-35		-35		
Output									
Output High Voltage	V_{OH}	$\mathrm{IOUT}^{\text {a }}=-10 \mathrm{~mA}$	Room Full		$\begin{aligned} & 9.7 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 9.7 \\ & 9.5 \end{aligned}$		V
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$	Room Full			$\begin{aligned} & \hline 0.30 \\ & 0.50 \end{aligned}$		$\begin{aligned} & \hline 0.30 \\ & 0.50 \end{aligned}$	
Output Resistance	$\mathrm{R}_{\text {OUT }}$	Iout $=10 \mathrm{~mA}$, Source or Sink	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & \hline 30 \\ & 50 \end{aligned}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	Ω
Rise Time ${ }^{\text {e }}$	t_{r}	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	Room	40		75		75	ns
Fall Time ${ }^{\text {e }}$	t_{f}		Room	40		75		75	

Notes
a. Refer to PROCESS OPTION FLOWCHART for additional information.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{C}_{\text {STRAY }} \operatorname{Pin} 8=\leq 5 \mathrm{pF}$.

Timing Waveforms

Figure 1.

Figure 2.

Figure 3.

Typical Characteristics

Pin Configurations

Detailed Description

Pre-Regulator/Start-Up Section

Due to the low quiescent current requirement of the Si9110/9111 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary "bootstrap" winding on the output inductor or transformer.

When power is first applied during start-up, $+\mathrm{V}_{\mathrm{IN}}$ (pin 2) will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between $+\mathrm{V}_{\text {IN }}$ and V_{CC} (pin 6). This start-up circuitry provides initial power to the IC by charging an external bypass capacitance connected to the V_{CC} pin. The constant current is disabled when V_{CC} exceeds 8.6 V . If V_{CC} is not forced to exceed the $8.6-\mathrm{V}$ threshold, then V_{CC}
will be regulated to a nominal value of 8.6 V by the pre-regulator circuit.

As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output driver disabled until V_{CC} exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET turns on. The design of the IC is such that the undervoltage lockout threshold will be at least 300 mV less than the pre-regulator turn-off voltage. Power dissipation can be minimized by providing an external power source to V_{CC} such that the constant current source is always disabled.

Detailed Description (Cont'd)

Note: During start-up or when V_{CC} drops below 8.6 V the start-up circuit is capable of sourcing up to 20 mA . This may lead to a high level of power dissipation in the IC (for a $48-\mathrm{V}$ input, approximately 1 W). Excessive start-up time caused by external loading of the V_{CC} supply can result in device damage. Figure 4 gives the typical pre-regulator current at $\mathrm{BiC} / \mathrm{DMOS}$ as a function of input voltage.

BIAS

To properly set the bias for the $\mathrm{Si} 9110 / 9111$, a $390-\mathrm{k} \Omega$ resistor should be tied from BIAS (pin 1) to $-\mathrm{V}_{\text {IN }}$ (pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUDOWN and RESET pins. The current flowing in the bias resistor is nominally $15 \mu \mathrm{~A}$.

Reference Section

The reference section of the Si 9110 consists of a temperature compensated buried zener and trimmable divider network. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4 V . The trimming procedure that is used on the Si 9110 brings the output of the error amplifier (which is configured for unity gain during trimming) to within 1% of 4 V . This compensates for input offset voltage in the error amplifier.

The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device.

Applications which use a separate external reference, such as non-isolated converter topologies and circuits employing optical coupling in the feedback loop, do not require a trimmed voltage reference with 1% accuracy. The Si9111 accommodates the requirements of these applications at a lower cost, by leaving the reference voltage untrimmed. The 10% accurate reference thus provided is sufficient to establish a dc bias point for the error amplifier.

Error Amplifier

Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier" compensation. A MOS differential input stage provides for low input current. The noninverting input to the error
amplifier ($\mathrm{V}_{\mathrm{REF}}$) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground.

Oscillator Section

The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to $-\mathrm{V}_{\text {IN }}$ for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to $\leq 50 \%$ by locking the switching frequency to one half of the oscillator frequency.

Remote synchronization is accomplished by capacitive coupling of a positive SYNC pulse into the OSC IN (pin 8) terminal. For a $5-\mathrm{V}$ pulse amplitude and $0.5-\mu \mathrm{s}$ pulse width, typical values would be 100 pF in series with $3 \mathrm{k} \Omega$ to pin 8.

SHUTDOWN and RESET

SHUTDOWN (pin 11) and RESET (pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET, SHUTDOWN can be either a latched or unlatched input. The output is off whenever SHUTDOWN is low. By simultaneously having SHUTDOWN and RESET low, the latch is set and $\overline{\text { SHUTDOWN }}$ has no effect until RESET goes high. The truth table for these inputs is given in Table 1.

Table 1: Truth Table for the SHUTDOWN and RESET Pins

$\overline{\text { SHUT }}$	RESET	Output
$\overline{\text { DOWN }}$	RES	Normal Operation
H	H	Normal Operation (No Change)
H	Z	Off (Not Latched)
L	H	Off (Latched)
L	L	Off (Latched, No Change)
\boldsymbol{J}	L	

Both pins have internal current source pull-ups and should be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time.

Detailed Description (Cont'd)

Output Driver

The push-pull driver output has a typical on-resistance of 20Ω. Maximum switching times are specified at 75 ns for a $500-\mathrm{pF}$ load. This is sufficient to directly drive MOSFETs such as the 2N7004, 2N7005, IRFD120 and IRFD220. Larger devices can be driven, but switching
times will be longer, resulting in higher switching losses. In order to drive large MOSPOWER devices, it is necessary to use an external driver IC, such as the Siliconix D469A. The D469A can switch very large devices such as the SMM20N50 ($500 \mathrm{~V}, 0.3 \Omega$) in approximately 100 ns .

Applications

Figure 4. 5-Watt Power Supply for Telecom Applications

